Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1320879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163062

RESUMO

Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.

2.
Physiol Genomics ; 54(7): 261-272, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648460

RESUMO

Limited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.shmAKAP and AAV9sc.RBD express a small hairpin RNA for the perinuclear scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) and an anchoring disruptor peptide for p90 ribosomal S6 kinase type 3 (RSK3), respectively. Quantitative PCR was used to assess viral genome (vg) delivery and transcript expression in Ossabaw and Yorkshire swine tissues. Myocardial viral delivery was 2-5 × 105 vg/µg genomic DNA (gDNA) for both infusion techniques at a dose ∼1013 vg/kg body wt, demonstrating delivery of ∼1-3 viral particles per cardiac diploid genome. Myocardial RNA levels for each expressed transgene were generally proportional to dose and genomic delivery, and comparable with levels for moderately expressed endogenous genes. Despite significant AAV9sc delivery to other tissues, including the liver, neither biologic induced toxic effects as assessed using functional, structural, and circulating cardiac and systemic markers. These results indicate successful targeted delivery of cardiomyocyte-selective viral vectors in swine without negative side effects, an important step in establishing efficacy in a preclinical experimental setting.


Assuntos
Dependovirus , Miócitos Cardíacos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Infusões Intravenosas , Miócitos Cardíacos/metabolismo , Sorogrupo , Suínos , Distribuição Tecidual
3.
Front Med Technol ; 4: 788264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252962

RESUMO

Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...